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Explicit Corrections for the Effect of Viscous Heating
in Circular Couette Viscometers
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Based on asymptotic solutions to the problem of coupled flow and heat transfer
in circular Couette flow of materials whose viscosity and thermal conductivity
are polynomial functions of temperature, we obtain expressions for the effect of
viscous heating on the gapwise distribution of shear rate under isothermal and
adiabatic wall conditions. These expressions are shown to exhibit the anticipated
asymptotic behavior as the gap-to-diameter ratio approaches unity and are in
agreement with numerical results for a reasonable range of the Nahme number.
Following that, we derive explicit rheological corrections for circular Couette-
Hatschek viscometers; these account for the effect of viscous heating in the
presence of temperature-dependent fluid properties and are reliable for values of
the correction factor down to around 0.8.

KEY WORDS: Couette viscometer; rheology; rheological corrections; viscous
heating.

1. INTRODUCTION

When viscous materials undergo shear flow, energy is dissipated due to
internal friction. When the ratio of the amount of generated heat to the
amount of heat removed from the material through conduction (that is, the
Brinkman number) is not negligible, a nonisothermal temperature profile
establishes itself in the sheared fluid. When the fluid viscosity is in turn a
function of temperature (as is the case in almost all fluids of practical inter-
est), the kinematics of the flow are affected by this nonuniform temperature
field. This thermomechanical coupling can give rise to significant deviations
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from the anticipated velocity profiles and can be the source of significant
errors in viscometric measurements at high shear rates, particularly with
rotational viscometers in which the entire sample is continuously sheared
during the measurement.

Utilizing a proposed method [1, 2], we have presented [3] asymp-
totic solutions for the temperature and velocity profiles in planar Couette
flow of a fluid whose viscosity and thermal conductivity are polynomial
functions of temperature. Based on these, we derived formal corrections, up
to fourth order in the Brinkman number, for viscometric measurements in
a narrow-gap Couette. Furthermore, we have extended this approach and
have derived similar asymptotic solutions for the effect of viscous heating
on the velocity and temperature profiles in the case of circular Couette flow
(again, with viscosity and thermal conductivity described as quadratic
functions of temperature [4]). This device has recently received increased
attention as suitable for the study of microstructure evolution during pro-
cessing of concentrated suspensions [ 5-7 ] as well as in the study of fiber
motion in nonhomogeneous flow fields. Based on these results for the
velocity profile, the present communication derives and tests expressions
for the distribution of shear rate in circular Couette flow under conditions
of isothermal and adiabatic walls. From these, we derive formal corrections
for the effect of viscous heating in Couette viscometers of nonnegligible
eccentricity.

2. MODEL EQUATIONS

We consider steady, incompressible flow in the Couette device shown
in Fig. 1. This device consists of two concentric cylinders of radii R and KR
(K < 1), of which the inner one is stationary and the outer is rotating with
constant angular velocity O. The only nonzero velocity component in this
geometry is the tangential velocity uT, there is no tangential pressure drop
and the equations of motion and energy reduce to
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where the following nondimensionalization has been applied:
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Fig. 1. Schematic diagram of the
Couette apparatus.

It should be pointed out that this representation does not consider devia-
tions in flow due to the finite height of the viscometer and thus, end effects
are not dealt with in the present study. In Eq. (3), Br is the Brinkman num-
ber, which is a measure of the heat generated by viscous heating compared
to the heat conducted through the material, and T0 is a reference tem-
perature. Closed-form solutions to Eqs. (1) and (2) have been obtained for
certain limiting cases (Refs. 1, 2, 8, 9 and references therein). When the
fluid viscosity and thermal conductivity can be expressed as general poly-
nomial functions of temperature,

where the subscript (0) indicates (known) property values corresponding to
a reference temperature, series solutions to Eqs. (1) and (2) can be for-
mulated as perturbations with respect to the Brinkman number [1, 2, 8]:

A procedure for obtaining the coefficient functions u0(X) — uN(x) and
O1(x) — ON(x) for planar Couette flow has been outlined in Refs. 1 and 2
and has been applied in the case of circular Couette flow in Ref. 4. We are
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interested here in the use of these results to obtain the distribution of shear
rate across the gap of the Couette and, from that, obtain rheological
corrections accounting for the effect of viscous heating in circular Couette
flow. We consider the following boundary conditions.

Case I (isothermal walls at x = 1 and x = K):

Case II (isothermal walls at x = 1 and adiabatic wall at x = K):

2.1. Series Solution for GrT(x)

The sought expressions for the shear rate [GrT(x)] across the gap will
come in a form similar to that of Eqs. (6) and (7), namely,

It should be pointed out that expansion of G ( x ) to second order in Br
requires expansions of k/k0 to first order and of u0/u to second order in O.
The coefficients G 0 ( x ) — G 2 ( x ) for Case I and Case II are obtained by dif-
ferentiating the velocity profile of Eq. (6) [4], according to the definition

These coefficients are as follows.

Case I:
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where

Case II:
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where

3. RESULTS AND DISCUSSION

3.1. Validation

To determine the range of validity of the series result for GrT, the
boundary-value problem defined by Eqs. (1) and (2) is solved numerically,
subject to the boundary conditions of Eqs. (8) and (9) and with material
properties corresponding to Eqs. (4) and (5). Subroutine DMOLCH of the
IMSL Library of Mathematical Software is used for this purpose.
DMOLCH is a well-tested and benchmarked subroutine which applies the
method of lines along with cubic Hermite interpolation polynomials to
solve general systems of parabolic partial differential equations. The solu-
tion of Eqs. (1) and (2) is obtained as the steady-state result of the trans-
ient problem solved by DMOLCH. A linear dependence of k/k0 (since A1

is the only coefficient of the thermal conductivity model that affects the
second-order result for velocity) and a quadratic of u0/u on O has been
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considered in the numerical solution. The accuracy of the numerical algo-
rithm has been verified separately through detailed comparison with
analytical solution when A1 = 0 [9].

Tables I and II summarize the results of a comparison between
numerical (based on a 400-node spatial discretization) and series solutions
for the distribution of the shear rate across the gap of the Couette, for
Cases I and II, respectively. Listed are the values of the norm of the per-
centage relative error (PRE), which is defined as

where the subscript j indicates the jth node across the gap, K is the total
number of nodes, and the subscripts n and s indicate numerical and series
solutions, respectively.

Table II. The Norm of the PRE Between Numerical and Series Solutions for the Shear Rate
in a Circular Couette for a Range of Values of Br B1 and K: B1 = l, B2=0.5, A1 =0.1, A2=0.0

(Case II)

Br B1

0.5
0.75
1
1.25
1.5

K= 0.85

Norm(G)

0.11
0.36
0.83
1.58
2.66

DGmax

0.55
1.83
4.24
8.21

13.9

K = 0.75

Norm(G)

0.09
0.31
0.73
1.38
2.33

DGmax

0.45
1.51
3.53
6.78

11.5

K = 0.65

Norm(G)

0.08
0.26
0.60
1.15
1.94

DGmax

0.36
1.18
2.76
5.30
9.01

Table I. The Norm of the PRE Between Numerical and Series Solutions for the Shear Rate
in a Circular Couette for a Range of Values of Br B1 and K: B1 = 1, B2= 0.5, A1 = 0.1, A2= 0.0

(Case I)

Br B1

1.5
3.0
4.0
5.0
6.0
7.0

K = 0.85

Norm(G)

0.032
0.252
0.586
1.12
1.89
—

DGmax

0.169
1.34
3.15
6.08

10.4
—

K = 0.75

Norm(G)

0.021
0.168
0.393
0.754
1.28
—

DGmax

0.112

0.892
2.09
4.05
6.93

—

K = 0.65

Norm(G)

0.013
0.103
0.242
0.466
0.794
1.24

DGmax

0.068
0.541
1.28
2.48
4.25
6.69



For Case II and for the material parameters used, the accuracy of the
series solution for the shear rate profile is satisfactory, with the norm of the
errors being less than 1% for Br B1 up to about 1.2 (depending on K).
However, the maximum deviation between series and numerical solutions
(DGmax) occurs at the location of the minimum shear rate (that is, on the
surface of the rotating wall) and is higher than the average errors shown
in Table II; for Br B1 = 0.75 the maximum relative error for the shear rate
calculated from the series solution is 1.83%, while for Br B1 = 1.5 it is
13.9% (for K = 0.85). Similar comments can be made for Case I (Table I),
along with the observation that the range of validity of the series solution
is in this case extended to Br B1 about 6 (again, depending on K). It should
be pointed out at this stage that quoting the Br alone is not sufficient to
quantify the effect of viscous heating on the perturbed gapwise shear rate
profile, since the deviation from simple shear flow depends not only on the
extent of viscous heating (which is expressed by Br) but also on the sen-
sitivity of the fluid viscosity on temperature (which is expressed by B). The
appropriate scale in this case is the Nahme number [10]. For this reason,
viscous heating is quantified by the use of the product Br B1 instead of Br
alone in the following discussion. It is clear from Eq. (10) and Eqs.
(12)-(17) that the derived expressions for GrT can easily be formulated as
expansions in terms of the product Br B1.

3.2. Shear Rate Distributions

For a fluid with temperature-dependent transport properties and for
the boundary conditions of Case I, the effect of viscous heating is to reduce
the shear rate on the inner and outer walls and thus cause the development
of a local maximum in GrT in the interior of the fluid. Figures 2a and b
show the profiles of the normalized shear rate, calculated through the
second-order series solution for a circular Couette with K = 0.5, for two
values of Br B1. The zeroth-order shear-rate profile, corresponding to
isothermal flow (or to a fluid whose transport properties are temperature
independent) is also shown, along with the shear rate profile derived from
the first-order series solution. The agreement between the second-order
solution and the numerical result is satisfactory for values of Br B1 up to
about 8, with the highest discrepancy occurring on the surface of the inner
cylinder. Increasing Br B1 results in a reduction of GrT at the inner wall
(compare Figs. 2a and b) and in the gradual development of a shear rate
maximum at some location inside the fluid. Increasing K results in a more
pronounced maximum in GrT, which is shifting toward the middle of the
gap, all other conditions being equal. This can be seen by comparing Figs.
3a and b, in which the distribution of GrT in Couettes with K = 0.7 and 0.8
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Fig. 2. Predictions of the series and of the numerical solutions for the shear
rate profile in circular Couette flow (K = 0.5) at two levels of the product
Br B1, namely, Br B1 = 5.0 (a) and Br B1 = 9.0 (b). Shown for comparison are
the predictions of the first-and zeroth-order series solutions. Case I.

is shown, with Fig. 2a. It is evident that the distribution of shear rate is
nonsymmetrical and that the inner cylinder surface is experiencing a higher
shear rate than the surface of the outside cylinder. This is true even for K
as large as 0.95 (a value for which the flow in the Couette is usually con-
sidered to be planar). It is also evident that at higher values of K and/or
Br B1, one has to gain from the extra accuracy of the second-order result
for the shear rate.

For the boundary conditions corresponding to Case II, substantial
viscous heating occurs at lower values of Br B1 and the maximum tem-
peratures are observed in the vicinity of the inner cylinder. As a result, the
shear rate profile is monotonic, with the highest shear rate on the inner-
cylinder wall and the lowest at the wall of the outside (rotating) cylinder.
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Fig. 3. Predictions of the series and of the numerical solutions for the shear
rate profile in circular Couette flow at two levels of the parameter K, namely,
K = 0.7 (a) and K = 0.8 (b) and for Br B1 = 5.0. Shown for comparison are the
predictions of the first- and zeroth-order series solutions. Case I.

Increasing the value of the product Br B1 makes this transition sharper, as
can be seen in Figs. 4a and b, for the case of K = 0.625. The effect of increasing
the parameter K is further shown in Figs. 5a and b.

3.3. Rheological Corrections in a Circular Couette Viscometer

The solutions for GrT presented previously are now used to develop
corrections for the interpretation of angular velocity vs torque data, such as
those obtained during measurement of fluid viscosity through the use of
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Fig. 4. Predictions of the series and of the numerical solutions for the shear rate
profile in circular Couette flow (K = 0.625) at two levels of the product Br B1,
namely, Br B1, = 1.0 (a) and Br B1 = 1.5 (b). Shown for comparison are the predic-
tions of the first- and zeroth-order series solutions. Case II.

the device described in Fig. 1, in cases where viscous heating and its effect
on fluid properties are important. Elementary analysis shows that the
torque, F, required to turn the outer cylinder of the viscometer is

where L is the height of the cylinders and (GrT)r=R is the shear rate at the
inner surface of the rotating cylinder (given by expressions in previous
section). Through Eq. (19), the viscosity of the fluid is found simply as the

Viscous Heating in Couette Viscometers
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Fig. 5. Predictions of the series and of the numerical solutions for the shear rate
profile in circular Couette flow at two levels of the parameter (K), namely, K = 0.75
(a) and K = 0.85 (b) and for Br B1 = 1.0. Shown for comparison are the predictions
of the first- and zeroth-order series solutions. Case II.

ratio between the torque (measured experimentally) and the shear rate on
the surface of the rotating cylinder. The latter can be calculated only when
the velocity field in the viscometer is known. When this is not the case,
the wall shear rate is calculated assuming an equivalent Newtonian fluid,
in which case the viscosity obtained through Eq. (19) is an "apparent"
viscosity that will coincide with the true viscosity of the fluid only in the
absence of non-Newtonian or thermal effects. When such effects are pre-
sent, the apparent viscosity needs to be corrected by accounting for the



Case I:

where the constants G0, G1, and G2 can be found from the results presented
in previous section for x = 1 and are given below.
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actual velocity profile between the two cylinders. In the case of tem-
perature-dependent transport properties in the presence of viscous heating,
a solution for the shear rate profile has been presented in this work, and
therefore, Eq. (19) can be rewritten as

where the coefficients G2A(K) and G 2 B ( K ) are given by

Case II:

where f(c) is a correction term which accounts for the sensitivity of the
transport properties of the fluid on temperature in the presence of viscous
heating. This term can be expressed as



For the case of isothermal walls (Case (I)), a second-order in Br series
solution in the case of planar Couette flow (K= 1) has been derived in
Ref. 1. From this solution, it can be shown that
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where the coefficients G2A(K) and G 2 B ( K ) are given by

Taking formal limits of the expressions for G0 — G2 corresponding to isother-
mal walls [Eqs. (22)-(24)], it can be shown that

Therefore, the derived expressions for f(c) in the case of circular Couette
flow collapse to the result obtained for simple-shear flow, when K
approaches unity.

For Case II, the velocity profile in planar Couette flow, up to second
order in Br, has been derived in this work and is

where E is the corresponding planar coordinate, which varies between zero
(adiabatic, stationary wall) and one (rotating, isothermal wall). From the
above result, it can be shown that the correction term in the limit of planar
flow (K –> 1) is



and are thus asymptotically correct.
The correction term f(c) for Case I is plotted in Fig. 6 as a function

of the product Br B1, for five values of the geometrical parameter K. The
limiting result as K approaches unity [Eq. (31)] is also shown as a solid
line for comparison. It can be seen that for K > 0.9, the result of Ref. 1 is
applicable; at lower values of the eccentricity parameter K, the results
derived in this study should be used instead. The correction term corre-
sponding to Case II is shown in Fig. 7 as a function of Br B1 for a range
of values of the eccentricity parameter K. As in Fig. 6, the result corre-
sponding to planar Couette flow is shown as a solid line for comparison.
In both Fig. 6 and Fig. 7 it can be seen that for small values of Br B1 (that
is, for small Br or for a fluid with almost constant viscosity), the correction
term approaches the limiting value of 1. As the value of the product Br B1

increases, the correction term deviates from unity; this deviation occurs
earlier (at lower values of Br B1) for higher values of K. Another observa-
tion is that the correction term in the adiabatic case starts deviating from
unity at lower values of Br B1 as compared to the f(c) obtained for Case I.
In the former case, for Br B1 as low as 0.1, the correction term is already
about around 0.96-0.97, while in the latter it is still roughly unity. The
obtained correction factors extend to about 0.8 for both cases; the solution
for Case I is valid for a wider range of Br B1 compared to Case II. The
local minima observed in some of the curves in Figs. 6 and 7 have no
physical meaning and simply indicate that the second-order series solution
is no longer valid at the corresponding values of Br B1. Similar behavior
has been seen in the results of Ref. 1 for the correction term in cone-and-
plate viscometers.

The sensitivity of the correction term for Case I [Eqs. (22)-(24)] on
the transport properties of the fluid is summarized in the contour graph in
Fig. 8. Plotted is the correction term f(c) as a function of A1 (–1.0 < a1 < 1.0)
and B1(0; .0 < B1 < 2.0). When B1 is small, the predicted correction term is
largely independent of A1 (and approaches unity as B1 approaches zero)
regardless of the specific value of the latter, as evidenced by contour lines
running almost parallel to the A1-axis. This simply expresses the fact that
for a material with temperature-insensitive viscosity (small B1), the ease by
which heat is conducted in it has only a minimal effect on Couette
measurements. For large B1, that is, for viscosity strongly dependent on
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As in Case I, it can be shown that the results for G0 — G2 obtained for Case
II [Eqs. (27)-(30)] satisfy
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Fig. 6. The effect of the parameter Br B1 in a Couette-Hatschek viscometer on the value of
the correction term [Eqs. (22)-(24)] for five values on the geometrical parameter (K). The
result corresponding to planar flow [Eq. (31)] is shown as a solid line. Case I.

Fig. 7. The effect of Br B1 in a Couette-Hatschek viscometer on the value of the correction
term [Eqs. (21) and (27)-(29)] for five values on the geometrical parameter (K). The result
corresponding to planar flow [Eq. (36)] is shown as a solid line. Case II.
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Fig. 8. The sensitivity of the correction term for a Couette-Hatschek viscometer in Case I
[Eqs. (22)-(24)] on the material parameters A1 and B1.

temperature, a temperature-dependent thermal conductivity (k) affects the
value of the correction term; when k increases with temperature (A1 > 0)
the value of the correction term increases toward unity with increasing A1

[that is, the effect of a viscosity decreasing sharply with temperature (large
B1) is "balanced" by a more conductive fluid which facilitates the removal
of the generated heat]. The opposite is true when B1 is large and A1 < 0
(thermal conductivity decreasing with increasing temperature), in which
case the value of the correction term deviates from unity with increasing
|A1|.

4. CONCLUSION

Series solutions, up to second order in the Brinkman number, have
been developed for the distribution of shear rate in circular Couette flow of
materials whose viscosity and thermal conductivity can be expressed as
polynomial functions of temperature with arbitrary coefficients. Both iso-
thermal and mixed boundary conditions have been considered. The derived
solutions have been validated by extensive comparison to numerical solu-
tions and are found to be reliable for a practical range of Br B1. Formal
corrections for viscosity measurements in circular Couette viscometers,
which account for viscous heating and temperature-dependent transport
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properties, are derived and are shown to exhibit the anticipated asymptotic
behavior in the limit of planar flow. Viscous heating, expressed by the
product Br B1, is found to affect the correction term more profoundly in
the case of an adiabatic inner (stationary) cylinder. In both cases, the
correction term is reliable down to a value about 0.8. The sensitivity of the
derived correction formulae on material (Ai, Bi) and process (Br) param-
eters has also been investigated.
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